contestada

Use differentiation method to find the slope of the tangent hence the
equation of the tangent as shown below.
Circle with radius = 5
and centre at (-3,1)
Tagent of the
circle at x = -6

Use differentiation method to find the slope of the tangent hence the equation of the tangent as shown below Circle with radius 5 and centre at 31 Tagent of the class=

Respuesta :

Answer:

The equation of the tangent at x=-6 is [tex]y=-\frac{3}{4}x-\frac{15}{2}[/tex]

Step-by-step explanation:

The equation of a circle with center (h,k) with radius r units is given by:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

The given circle has center (-3,1) and radius 5 units.

We substitute the center and the radius into the equation to get;

[tex](x--3)^2+(y-1)^2=5^2[/tex]

[tex](x+3)^2+(y-1)^2=25[/tex]

To find the slope, we differentiate implicitly to get:

[tex]2(x+3)+2(y-1)\fra{dy}{dx}=0[/tex]

[tex]2(y-1)\frac{dy}{dx}=-2(x+3)[/tex]

[tex]\frac{dy}{dx}=-\frac{x+3}{y-1}[/tex]

When x=-6;we have [tex](-6+3)^2+(y-1)^2=25[/tex]

[tex]\implies 9+(y-1)^2=25[/tex]

[tex]\implies (y-1)^2=25-9[/tex]

[tex]\implies (y-1)^2=16[/tex]

[tex]\implies y-1=\pm \sqrt{16}[/tex]

[tex]\implies y-1=\pm4[/tex]

[tex]\implies y=1\pm4[/tex]

[tex]y=-3[/tex] or  [tex]y=5[/tex]

From the graph the reuired point is (-6,-3).

We substitute this point to find the slope;

[tex]\frac{dy}{dx}=-\frac{-6+3}{-3-1}[/tex]

[tex]\frac{dy}{dx}=-\frac{3}{4}[/tex]

The equation is given by [tex]y-y_1=m(x-x_1)[/tex].

We plug in the slope and the point to get:

[tex]y--3=-\frac{3}{4}(x--6)[/tex]

[tex]y=-\frac{3}{4}(x+6)-3[/tex]

[tex]y=-\frac{3}{4}x-\frac{9}{2}-3[/tex]

[tex]y=-\frac{3}{4}x-\frac{15}{2}[/tex]