rmatl05
contestada

A truck driver travels at 59 miles per hour. The truck tires have a diameter of 30 inches. What is the angular velocity of the wheels in revolutions per minute (rpm)?

Respuesta :

Answer:

[tex]661.4\ rpm[/tex]

Step-by-step explanation:

we know that

1 mile=63,360 inches

step 1

Find the circumference of the wheels

[tex]C=2\pi r[/tex]

we have

[tex]r=30/2=15\ in[/tex] -----> the radius is half the diameter

substitute

[tex]C=2\pi(15)[/tex]

[tex]C=30\pi\ in[/tex]

assume

[tex]\pi =3.14[/tex]

[tex]C=30(3.14)=94.2\ in[/tex]

Remember that    

The circumference of the wheels represent one revolution

Convert 59 miles per hour to inches per minute

[tex]59\ mi/h=59*63,360/60=62,304\ in/min[/tex]

using proportion find the number of revolutions  

[tex]\frac{1}{94.2}\frac{rev}{in}=\frac{x}{62,304}\frac{rev}{in}\\ \\x=62,304/94.2\\ \\x=661.4\ rev[/tex]

therefore

substitute

[tex]62,304\ in/min=661.4\ rev/min=661.4\ rpm[/tex]