Find the domain and range of the graph below:


Answer:
Domain is all real numbers; Range is all numbers less than or equal to 0
Step-by-step explanation:
Domain covers x values, range covers y values. The domain of an x^2 parabola, which is what this is, has a domain of all real numbers. Meaning that while the branches of the function keep going up and up and up or down and down and down, the values of x will never stop growing.
The range here is indicative of the lowest y value to the highest that the function covers. In this case, since the parabola is upside down, we have the highest to the lowest. The highest that the function goes up the y axis is right at the origin, where y = 0. Then it drops down into forever. So the range is all values of y less than or equal to 0
The Domain of [tex]f(x)[/tex] is all the real numbers, and
The Range of [tex]f(x)[/tex] is [tex]y\le0[/tex] or [tex]f(x)\le0[/tex]
The diagram shows the graph of the quadratic function
[tex]f(x)=-x^2[/tex]
The domain of [tex]f(x)[/tex] is all the real numbers, since the function has defined values for all real values of [tex]x[/tex].
The range of [tex]f(x)[/tex] is the set of values that [tex]f(x)[/tex] can assume. The square function has a range
[tex]\{y \text{ }|\text{ }y=x^2\text{ and }y\ge0\}[/tex] or the half-open interval [tex][0,\infty)[/tex].
This means that the negative of the square function will have the range
[tex]\{y \text{ }|\text{ }y=-x^2\text{ and }y\le0\}[/tex] or the half-open interval [tex](-\infty,0][/tex].
So, the domain of [tex]f(x)[/tex] is the open interval [tex](-\infty,\infty)[/tex] (all the real numbers), and the range of [tex]f(x)[/tex] is the half-open interval [tex](-\infty,0][/tex] (or, [tex]y\le0[/tex])
Learn more about function domain and ranges here: https://brainly.com/question/20207421