Respuesta :

Answer:

The length of the hypotenuse is [tex]h = 6.71\ units[/tex]

Step-by-step explanation:

For a straight triangle it is true that

[tex]h = \sqrt{a ^ 2 + b ^ 2}[/tex]

Where has is the hypotenuse of the right triangle and a and b are the lengths of the other two sides.

In this case we know that:[tex]a = 3\\b = 6[/tex]

So the hypotenuse is:

[tex]h = \sqrt{3 ^ 2 + 6 ^ 2}[/tex]

[tex]h = \sqrt{3 ^ 2 + 6 ^ 2}[/tex]

[tex]h = 3*\sqrt{5}[/tex]

[tex]h = 3*\sqrt{5}[/tex]

[tex]h = 6.71[/tex]

ANSWER

The hypotenuse is 3√5 units.

EXPLANATION

We use the Pythagoras Theorem.

Let h be the hypotenuse.

The Pythagoras Theorem says that, the hypotenuse square is equal to the sum of the squares of the two shorter legs.

[tex] {h}^{2} = {3}^{2} + {6}^{2} [/tex]

[tex]{h}^{2} = 9+ 36[/tex]

[tex]{h}^{2} = 45[/tex]

Take positive square root.

[tex]h = \sqrt{45} [/tex]

[tex]h = 3 \sqrt{5} units[/tex]