Respuesta :

Answer:

Part 1) [tex]\angle\ C=50.3\°[/tex]

Part 2) [tex]\angle\ B=67.4\°[/tex]

Part 3) [tex]\angle\ A=62.3\°[/tex]

Step-by-step explanation:

step 1

Find the measure of angle C

Applying the law of cosines

[tex]c^{2} =a^{2} +b^{2} -2(a)(b)cos(C)[/tex]

substitute the given values and solve for cos(C)

[tex]20^{2} =23^{2} +24^{2} -2(23)(24)cos(C)[/tex]

[tex]2(23)(24)cos(C)=23^{2} +24^{2} -20^{2}[/tex]

[tex]1,104cos(C)=705[/tex]

[tex]cos(C)=705/1,104[/tex]

[tex]C=arccos(705/1,104)=50.3\°[/tex]

step 2

Find the measure of angle B

Applying the law of cosines

[tex]b^{2} =c^{2} +a^{2} -2(c)(a)cos(B)[/tex]

substitute the given values and solve for cos(B)

[tex]24^{2} =20^{2} +23^{2} -2(20)(23)cos(B)[/tex]

[tex]2(20)(23)cos(B)=20^{2} +23^{2} -24^{2}[/tex]

[tex]920cos(B)=353[/tex]

[tex]cos(B)=353/920[/tex]

[tex]B=arccos(353/920)=67.4\°[/tex]

step 3

Find the measure of angle A

Remember that the sum of the internal angles of triangle must be equal to 180 degrees

[tex]\angle\ A+\angle\ B+\angle\ C=180\°[/tex]

substitute the given values and solve for ∠A

[tex]\angle\ A+67.4\°+50.3\°=180\°[/tex]

[tex]\angle\ A=180\°-117.7\°[/tex]

[tex]\angle\ A=62.3\°[/tex]