Respuesta :

solution for #18 is C and for #19 is D

QUESTION 18

Use the Pythagorean Identity.

[tex] \cos^{2}( \theta) +\sin^{2}( \theta) = 1[/tex]

We substitute the given value into the formula,

[tex] \cos^{2}( \theta) +( { \frac{4}{7} })^{2} = 1[/tex]

[tex] \cos^{2}( \theta) + \frac{16}{49} = 1[/tex]

[tex] \cos^{2}( \theta) = 1 - \frac{16}{49} [/tex]

[tex]\cos^{2}( \theta) = \frac{33}{49} [/tex]

Since we are in the first quadrant, we take positive square root,

[tex]\cos( \theta) = \sqrt{\frac{33}{49} } [/tex]

[tex]\cos( \theta) = \frac{ \sqrt{33}}{7} [/tex]

The 3rd choice is correct.

QUESTION 19.

We want to simplify;

[tex]18 \sin( \theta) \sec( \theta) [/tex]

Recall the reciprocal identity

[tex] \sec( \theta) = \frac{1}{ \cos( \theta) } [/tex]

This implies that,

[tex]18 \sin( \theta) \sec( \theta) =18 \sin( \theta) \times \frac{1}{ \cos( \theta) } [/tex]

[tex]18 \sin( \theta) \sec( \theta) =18 \times \frac{\sin( \theta) }{ \cos( \theta) } [/tex]

This will give us:

[tex]18 \sin( \theta) \sec( \theta) =18 \tan( \theta) [/tex]

The correct choice is D.