Respuesta :
Answer:
the radius of sphere X is 2 times larger than the radius of sphere T
Step-by-step explanation:
Given
Surface area of sphere, T =452.16
Surface area of sphere, X= 1808.64
how many times larger is the radius of sphere X than the radius of sphere T?
Finding radius of both spheres:
Surface area of sphere is given as
A=4πr^2
Now putting value of Ta=452.16 in above formula
452.16=4πrt^2
rt^2=452.16/4π
rt^2=35.98
Taking square root on both sides
rt=5.99
Now putting value of Xa=1808.64 in above formula
1808.64=4πrx^2
rx^2=1808.64/4π
rx^2=143.92
Taking square root on both sides
rx=11.99
Comparing radius of sphere X and the radius of sphere T
rx/rt=11.99/5.99
= 2.00
rx=2(rt)
Hence the radius of sphere X is 2 times larger than the radius of sphere T!
Hello!
The answer is:
The radius of the sphere X is 2 times larger than the radius of the sphere T
Why?
To solve the problem, we need to find the radius of both spheres using the following formula:
[tex]Area=\pi *radius^{2}\\\\radius=\sqrt{ \frac{Area}{\pi }}[/tex]
Where,
Area, is the area of the circle.
r, is the radius of the circle.
So,
We are given:
[tex]T_{area}=452.16units^{2}\\X_{area}=1808.64units^{2}[/tex]
Now, calculating we have:
For the sphere X,
[tex]X_{radius}=\sqrt{ \frac{X_{area}}{\pi }}=\sqrt{\frac{1808.64units^{2} }{\pi } }\\\\X_{radius}=\sqrt{\frac{1808.64units^{2} }{\pi }}=\sqrt{575.71units^{2} }=23.99units[/tex]
For the sphere T,
[tex]T_{radius}=\sqrt{ \frac{T_{area}}{\pi }}=\sqrt{\frac{452.16units^{2} }{\pi } }\\\\X_{radius}=\sqrt{\frac{452.16units^{2} }{\pi }}=\sqrt{143.93units^{2} }=11.99units[/tex]
Then, dividing the radius of the X sphere by the T sphere to know the ratio (between their radius), we have:
[tex]ratio=\frac{23.99units}{11.99units}=2[/tex]
Hence, we have the radius of the sphere X is 2 times larger than the radius of the sphere T.
Have a nice day!