Respuesta :
Answer:
a) If order matters, choices the player have = 5040
b) If order does not matter, choices the player have = 210
Step-by-step explanation:
n = 10, r = 4
When the order matters, its permutation.
permutation without repetition = P(n, r) = [tex]\frac{n!}{(n - r)!}[/tex]
= [tex]\frac{10!}{(10 - 4)!}[/tex]
= [tex]\frac{10!}{6!}[/tex]
= 5040
When the order doesn't matter, its combination.
combination without repetition= C(n, r) = [tex]\frac{n!}{r!(n - r)!}[/tex]
= [tex]\frac{10!}{4!(10 - 4)!}[/tex]
= [tex]\frac{10!}{4! × 6!}[/tex]
= 210
If order matters choices the player has is [tex]5040[/tex].
A)Apply permutation without repetition when order matters
[tex]P(n,r)=\dfrac{n!}{(n-r)!}[/tex]
where [tex]n=10(0,1,2,3,4,5,6,7,8,9)[/tex]
[tex]r=4[/tex]
[tex]P(10,4)=\dfrac{10!}{(10-4)!}[/tex]
[tex]P(10,4)=\dfrac{10!}{6!}[/tex]
[tex]P(10,4)=\dfrac{10\times9\times8\times7\times6!}{6!}[/tex]
[tex]P(10,4)=10\times9\times8\times7[/tex]
[tex]P(10,4)=5040[/tex]
B) Apply combination without repetition when order doesn't matters
[tex]C(n,r)=\dfrac{n!}{r!(n-r)!}\\C(n,r)=\dfrac{10!}{4!(10-4)!}[/tex]
[tex]C(n,r)=\dfrac{10!}{4!(6)!}[/tex]
[tex]C(n,r)=\dfrac{10\times9\times8\times7\times6!}{4!(6)!}[/tex]
[tex]C(10,4)=210[/tex].
Choice does the player has if order does not matter is [tex]210[/tex].
Learn more about permutation and combination here ,
https://brainly.com/question/4546043?referrer=searchResults