(10.02)

The point (−3, 1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.


Respuesta :

Answer:

Part 1) [tex]sin(\theta)=\frac{\sqrt{10}}{10}[/tex]

Part 2) [tex]cos(\theta)=-3\frac{\sqrt{10}}{10}[/tex]

Part 3) [tex]tan(\theta)=-1/3[/tex]

Step-by-step explanation:

we know that

The angle is in the second quadrant  so the sine is positive, the cosine is negative and the tangent is negative

step 1

Find the radius r applying the Pythagoras theorem

[tex]r^{2}=x^{2} +y^{2}[/tex]

substitute the given values

[tex]r^{2}=(-3)^{2} +(1)^{2}[/tex]

[tex]r^{2}=10[/tex]

[tex]r=\sqrt{10}\ units[/tex]

step 2

Find the value of [tex]sin(\theta)[/tex]

[tex]sin(\theta)=y/r[/tex]

substitute values

[tex]sin(\theta)=1/\sqrt{10}[/tex]

Simplify

[tex]sin(\theta)=\frac{\sqrt{10}}{10}[/tex]

step 3

Find the value of [tex]cos(\theta)[/tex]

[tex]cos(\theta)=x/r[/tex]

substitute values

[tex]cos(\theta)=-3/\sqrt{10}[/tex]

Simplify

[tex]cos(\theta)=-3\frac{\sqrt{10}}{10}[/tex]

step 4

Find the value of [tex]tan(\theta)[/tex]

[tex]tan(\theta)=y/x[/tex]

substitute values

[tex]tan(\theta)=-1/3[/tex]