Respuesta :
Answer:
- 4
Step-by-step explanation:
Using the rule of exponents
• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]
• [tex]a^{-m}[/tex] ⇔ [tex]\frac{1}{a^{m} }[/tex]
[tex](\frac{1}{9}) ^{a+1}[/tex] = [tex]9^{-(a+1)}[/tex] = [tex]3^{-2(a+1)}[/tex]
and right side
= [tex]3^{4(a+1)}[/tex] × [tex]3^{3(2-a)}[/tex]
Hence
[tex]3^{-2a-2}[/tex] = [tex]3^{4a+4}[/tex] × [tex]3^{6-3a}[/tex]
[tex]3^{-2a-2}[/tex] = [tex]3^{a+10}[/tex]
Equating exponents on both sides gives
a + 10 = - 2a - 2 ( add 2a to both sides )
3a + 10 = - 2 (subtract 10 from both sides )
3a = - 12 ( divide both sides by 3 )
a = - 4
Answer:
the answer to the question you is A on edg
Step-by-step explanation: