Respuesta :

Answer:

- 4

Step-by-step explanation:

Using the rule of exponents

• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

• [tex]a^{-m}[/tex] ⇔ [tex]\frac{1}{a^{m} }[/tex]

[tex](\frac{1}{9}) ^{a+1}[/tex] = [tex]9^{-(a+1)}[/tex] = [tex]3^{-2(a+1)}[/tex]

and right side

= [tex]3^{4(a+1)}[/tex] × [tex]3^{3(2-a)}[/tex]

Hence

[tex]3^{-2a-2}[/tex] = [tex]3^{4a+4}[/tex] × [tex]3^{6-3a}[/tex]

[tex]3^{-2a-2}[/tex] = [tex]3^{a+10}[/tex]

Equating exponents on both sides gives

a + 10 = - 2a - 2 ( add 2a to both sides )

3a + 10 = - 2 (subtract 10 from both sides )

3a = - 12 ( divide both sides by 3 )

a = - 4

Answer:

the answer to the question you is A on edg

Step-by-step explanation: