Respuesta :

Answer:

{[tex]x| -\sqrt{5} <x <\sqrt{5}[/tex]}

Step-by-step explanation:

We must solve the following inequality

[tex]x^2- 5<0[/tex]

factor the expression

[tex](x-\sqrt{5})(x+\sqrt{5})<0[/tex]

Case 1

[tex](x-\sqrt{5}) < 0[/tex] →  [tex]x < \sqrt{5}[/tex]

[tex](x+\sqrt{5}) >0[/tex]  → [tex]x > -\sqrt{5}[/tex]

{[tex]x| -\sqrt{5} <x <\sqrt{5}[/tex]}

Case 2

[tex](x-\sqrt{5}) > 0[/tex] →  [tex]x > \sqrt{5}[/tex]

[tex](x+\sqrt{5}) <0[/tex]  → [tex]x < -\sqrt{5}[/tex]

Without solution

The set  solution is {[tex]x| -\sqrt{5} <x <\sqrt{5}[/tex]}