A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed Vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density p 3.84 x108 g/m3 and volume V 2.17 x 1012 m3 Recall that the universal gravitational constant is G 6.67 x 10-11 N m2/kg2

Respuesta :

Answer: 117.626m/s

Explanation:

The escape velocity [tex]V_{esc}[/tex] is given by the following equation:

[tex]V_{esc}=\sqrt{\frac{2GM}{R}}[/tex]   (1)

Where:

[tex]G[/tex] is the Gravitational Constant and its value is [tex]6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex]

[tex]M[/tex]  is the mass of the asteroid

[tex]R[/tex]  is the radius of the asteroid

On the other hand, we know the density of the asteroid is [tex]\rho=3.84(10)^{8}g/m^{3}[/tex] and its volume is [tex]V=2.17(10)^{12}m^{3}[/tex].

The density of a body is given by:

[tex]\rho=\frac{M}{V}[/tex]  (2)

Finding [tex]M[/tex]:

[tex]M=\rhoV=(3.84(10)^{8} g/m^{3})(2.17(10)^{12}m^{3})[/tex]  (3)

[tex]M=8.33(10)^{20}g=8.33(10)^{17}kg[/tex]  (4)  This is the mass of the spherical asteroid

In addition, we know the volume of a sphere is given by the following formula:

[tex]V=\frac{4}{3}\piR^{3}[/tex]   (5)

Finding [tex]R[/tex]:

[tex]R=\sqrt[3]{\frac{3V}{4\pi}}[/tex]   (6)

[tex]R=\sqrt[3]{\frac{3(2.17(10)^{12}m^{3})}{4\pi}}[/tex]   (7)

[tex]R=8031.38m[/tex]   (8)  This is the radius of the asteroid

Now we have all the necessary elements to calculate the escape velocity from (1):

[tex]V_{esc}=\sqrt{\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(8.33(10)^{17}kg)}{8031.38m}}[/tex]   (9)

Finally:

[tex]V_{esc}=117.626m/s[/tex] This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.