Respuesta :

Answer: Option B

Step-by-step explanation:

By definition, only those functions that are one to one have an inverse function.

A function is one by one if there are not two different input values, [tex]x_1[/tex] and [tex]x_2[/tex], that have the same output value y

Note that the function [tex]f(x)= \frac{|x+3|}{5}[/tex]  is not a one-to-one function

When x=2  [tex]f(x)= \frac{|2+3|}{5}=1\ ,\ \ y=1[/tex]

When x=8  [tex]f(x)= \frac{|-8+3|}{5}=1\ \ ,\ y=1[/tex]

Note that the function [tex]f(x)= \frac{x^4}{7}+ 27[/tex]  is not a one-to-one function

When x=1 [tex]f(x)= \frac{(1)^4}{7}+27\ ,\ \ y=\frac{190}{7}[/tex]

When x=-1  [tex]f(x)= \frac{(-1)^4}{7}+27\ ,\ \ y=\frac{190}{7}[/tex]

Note that the function [tex]f(x)= \frac{1}{x^2}[/tex]  is not a one-to-one function

When x=1 [tex]f(x)= \frac{1}{(1)^2}\ ,\ \ y=1[/tex]

When x=-1  [tex]f(x)= \frac{1}{(-1)^2}\ ,\ \ y=1[/tex]

Then the answer is the option B.

You can verify that The function [tex]f (x) = x ^ 5-3[/tex] is a one-to-one function and therefore its inverse is a function