[tex]\bf \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( \frac{x}{y}\right)\implies \log_a(x)-\log_a(y) \end{array}~\hfill \begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \stackrel{\textit{we'll use this one}}{a^{log_a x}=x} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\bf 2\ln(3)=\ln(x-4)\implies \ln(3^2)=\ln(x-4)\implies \ln(9)=\ln(x-4) \\\\\\ \log_e(9)=\log_e(x-4)\implies e^{\log_e(9)}=e^{\log_e(x-4)}\implies 9=x-4\implies \boxed{13=x}[/tex]