Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the addition identity for sine

sin(x + y) = sinxcosy - cosxsiny

Consider the left side

cos²(45 - A) - sin²(45 - A)

cos²(45 - A) = 1 - sin²(45 - A), thus

1 - sin²(45 - A) - sin²(45 - A)

= 1 - 2sin²(45 - A) ← expand sin(45 - A)

= 1 - 2(sin45cosA - cos45sinA)²

= 1 - 2([tex]\frac{\sqrt{2} }{2}[/tex]cosA - [tex]\frac{\sqrt{2} }{2}[/tex]sinA)²

= 1 - 2([tex]\frac{1}{2}[/tex]cos²A - sinAcosA + [tex]\frac{1}{2}[/tex]sin²A)

= 1 - cos²A + 2sinAcosA - sin²A

= sin²A + 2sinAcosA - sin²A

= 2sinAcosA

= sin2A = right side ⇒ verified

By Using the addition identity for sine; sin(x + y) = sinx cosy - cosx siny.

It is proved that cos²(45 - A) - sin²(45 - A)= Sin2A.

How to convert the sine of an angle to some angle of cosine?

We can use the fact that:

[tex]\sin(\theta ^\circ) = \cos(90 - \theta^\circ)[/tex]

To convert the sine to cosine (but the angles won't stay the same unless it's 45 degrees).

Using the addition identity for sine

sin(x + y) = sinx cosy - cosx siny

Now,

cos²(45 - A) - sin²(45 - A)

cos²(45 - A) = 1 - sin²(45 - A),

1 - sin²(45 - A) - sin²(45 - A)

= 1 - 2sin²(45 - A)  

Expand sin(45 - A)

= 1 - 2(sin45cosA - cos45sinA)²

= 1 - 2(√2/2 cosA - √2/2 sinA)²

= 1 - 2(1/2 cos²A - sinAcosA + 1/2 sin²A)

= 1 - cos²A + 2sinAcosA - sin²A

= sin²A + 2sinAcosA - sin²A

= 2sinAcosA

cos²(45 - A) - sin²(45 - A) = sin2A = right side

Hence, it is verified.

Learn more about sine to cosine conversion here:

https://brainly.com/question/1421592

#SPJ2