Write your answer without using negative exponents.
(w^5)^-7

Your answer would be [tex]\frac{1}{w^{35} }[/tex]
This is because (w^5)^-7 expands to give w^-35 because you multiply the exponents. When you have a negative exponent, this can also be written as a reciprocal, i.e. x^-2 = 1/x². This means that we can write w^-35 as 1/(w^35), which doesn't include any negative exponents.
I hope this helps! Let me know if you have any questions :)
The answer without using negative exponents [tex](w^{5})^{-7}[/tex] is [tex]\frac{1}{w^{35} }[/tex] .
The following properties of exponents are -
Given expression is [tex](w^{5})^{-7}[/tex] .
Using the properties of exponents, we have -
= [tex]w^{-35}[/tex]
= [tex]\frac{1}{w^{35} }[/tex] which does not have any negative exponents.
Thus, the answer without using negative exponents [tex](w^{5})^{-7}[/tex] is [tex]\frac{1}{w^{35} }[/tex] .
To learn more about properties of exponents, refer -
https://brainly.com/question/3187898
#SPJ2