The expressions for the possible dimensions of the rectangular prism.
[tex]V = 5y^3 + 37y^2 + 14 y[/tex]. The possible dimensions are y, 5y + 2, and y + 7.
How to find the volume of a right rectangular prism?
Suppose that the right rectangular prism in consideration be having its dimensions as 'a' units, 'b' units, and 'c' units,
then its volume is given as:
[tex]V = a\times b \times c \: \: unit^3[/tex]
The given expressions for the possible dimensions of the rectangular prism.
[tex]V = 5y^3 + 37y^2 + 14 y[/tex]
y is common to all 3 terms
so,
[tex]V = y(5y^2 + 37y + 14)\\V = y (5y + 2)(y + 7)[/tex]
By the comparison of the volume
[tex]V = a\times b \times c \: \: unit^3[/tex]
Therefore, the dimensions are a = y, b = 5y + 2, c = y + 7.
Learn more about the volume of a right rectangular prism here:
https://brainly.com/question/21308574
#SPJ2