what is the sum ? 2x

Answer: Third option.
Step-by-step explanation:
Given the expression [tex]\frac{2x+4}{x+1}+\frac{-x+5}{x+1}[/tex] you need to make the addition indicated.
First, it is important to remember the multiplication of signs:
[tex](+)(+)=+\\(-)(-)=+\\(-)(+)=-[/tex]
Therefore, since both fractions have equal denominator, you can rewrite the same denominator and add the numerators. Then you get that the sum is:
[tex]\frac{2x+4}{x+1}+\frac{-x+5}{x+1}=[/tex][tex]\frac{(2x+4)+(-x+5)}{x+1}=\frac{2x+4-x+5}{x+1}=\frac{x+9}{x+1}[/tex]
Answer:
The correct answer is third option
(x + 9)/(x + 1)
Step-by-step explanation:
It is given an expression,
(2x + 4)/(x + 1) + (-x + 5)/(x + 1)
To find the sum
The given expression shows the sum of two fractions,
The denominators are same
(2x + 4)/(x + 1) + (-x + 5)/(x + 1)
= [2x + 4 + -x + 5]/(x + 1)
= (x + 9)/(x + 1)
Therefore the correct answer is third option
(x + 9)/(x + 1)