Respuesta :

[tex]\mathsf{Given : Terminal\;point - \left(\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)}[/tex]

[tex]\mathsf{\bigstar\;\;x - coordinate : \dfrac{\sqrt{3}}{2}}[/tex]

[tex]\mathsf{\bigstar\;\;y - coordinate : \dfrac{1}{2}}[/tex]

Now consider each option :

[tex]\mathsf{\bigstar\;\;Option\;(A) : cos\left(\dfrac{\pi}{6}\right) = cos30^{\circ} = \dfrac{\sqrt{3}}{2}}[/tex]

[tex]\mathsf{\bigstar\;\;Option\;(B) : sin\left(\dfrac{\pi}{6}\right) = sin30^{\circ} = \dfrac{1}{2}}[/tex]

[tex]\mathsf{\bigstar\;\;Option\;(C) : cos\left(\dfrac{\pi}{3}\right) = cos60^{\circ} = \dfrac{1}{2}}[/tex]

[tex]\mathsf{\bigstar\;\;Option\;(D) : sin\left(\dfrac{\pi}{3}\right) = sin60^{\circ} = \dfrac{\sqrt{3}}{2}}[/tex]

From the Above, We can notice that :

[tex]\mathsf{\bigstar\;\;sin\left(\dfrac{\pi}{6}\right)\;and\;cos\left(\dfrac{\pi}{3}\right)\;are\;equivalent\;to\;\dfrac{1}{2}}[/tex]

Answers : Option (B) and Option (C)

The trigonometric expressions sin(π/6) is equivalent to the y coordinate of the terminal point (√3/2, 1/2) option (B) is correct.

What is the trigonometric ratio?

The trigonometric ratio is defined as the ratio of the pair of a right-angled triangle.

We have:

y coordinate of the terminal point (√3/2, 1/2)

Terminal point = (√3/2, 1/2)

sin(a) = 1/2

a = sin⁻¹(1/2)

a = π/6

a is the angle.

y coordinate is sin(π/6)

Thus, the trigonometric expressions sin(π/6) is equivalent to the y coordinate of the terminal point (√3/2, 1/2) option (B) is correct.

Learn more about trigonometry here:

brainly.com/question/26719838

#SPJ2