What is the surface area of the cone? (Use 3.14 for pi .)
794.42 in.2
483.56 in.2
822.68 in.2
414.48 in.2

Answer:
794.42 in² (since I used the pi = 3.14159 , the result is slightly different,
Step-by-step explanation:
Formula: Given radius and slant height calculate the height, volume, lateral surface area and total surface area.
Given r, s find h, V, L, A
h = √(s² - r²)
r = 11 in
h = 4.796 in
s = 12 in
V = 607.7 in³
L = 414.7 in²
B = 380.1 in²
A = 794.8 in
Agenda: r = radius
h = height
s = slant height
V = volume
L = lateral surface area
B = base surface area
A = total surface area
π = pi = 3.14159
√ = square root
Answer: the correct option is
(A) 794.42 in.²
Step-by-step explanation: We are given to find the surface area of the cone shown in the figure.
We know that
the SURFACE AREA of a cone with height h units and radius r units is given by
[tex]S=\pi r(r+\sqrt{h^2+r^2}).[/tex]
For the given cone, we have
r = 11 in. and
[tex]h=\sqrt{12^2-11^2}=\sqrt{144-121}=\sqrt{23}=4.8.[/tex]
Therefore, the surface area of the given cone is
[tex]S\\\\=\pi r(r+\sqrt{h^2+r^2})\\\\=3.14\times11(11+\sqrt{4.8^2+11^2})\\\\=34.54(11+12)\\\\=34.54\times23\\\\=794.42.[/tex]
Thus, the required surface area of the given cone is 794.42 in.²
Option (A) is CORRECT.