Respuesta :

r3t40

[tex]\boxed{KE=\dfrac{1}{2}mv^2}[/tex]

Hope this helps.

r3t40

Answer:

  • [tex]{\boxed{\sf{\red{K.E = \frac{1}{2} mv^{2}}}}}[/tex]

Explanation:

[tex]{\underline{\underline{\bf{\orange{What \: is \: Kinetic\: Energy\:?}}}}}[/tex]

  • The energy possessed by a body by virtue of its motion.

[tex]{\underline{\underline{\bf{\green{Formula\:Derivation\::-}}}}}[/tex]

[tex]\star\:\sf{Consider,}[/tex]

  • Body of mass 'm' is moving with a velocity 'v'.
  • A uniform force 'F' opposes the motion of a body and brings it to rest after a displacement 's'

[tex]:\implies\:\:\sf{v^{2} -u^{3} = 2a}[/tex]

[tex]:\implies\:\:\sf{0-v^{2} = 2as}[/tex]

[tex]:\implies\:\:\sf{-v^{2}=2as}[/tex]

[tex]:\implies\:\:\sf{a = \dfrac{-v^{2}}{2s}}[/tex]

The opposing force on the body,

  • F = ma = -mv²/2s

By Newton's 3rd law, the force applied by the body :-

[tex]:\implies\:\:\sf{-F = -\bigg( -\dfrac{mv^2}{2s}\bigg) = \dfrac{mv^2}{2s}}[/tex]

[tex]{\boxed{\bf{W = Force \times Displacement}}}[/tex]

[tex]:\implies\:\:\sf{W = F \times S}[/tex]

[tex]:\implies\:\:\sf{W = \dfrac{mv^2}{2s}\times s = \dfrac{1}{2}mv^2}[/tex]

  • We know that, Work done will be stored as kinetic energy in the body.

[tex]\star\:\:{\underline{\boxed{\sf{\red{K.E = \dfrac{1}{2}mv^{2}}}}}}[/tex]

Ver imagen ItzBrainiac