Respuesta :

Answer:

Part 1) [tex]y=-x^{2}[/tex]  ---> Translated up by 1 units

Part 2) [tex]y=x^{2}+1[/tex]  ---> Reflected across the x-axis

Part 3) [tex]y=-(x+1)^{2}-1[/tex]  ---> Translated left by 1 unit

Part 4) [tex]y=-(x-1)^{2}-1[/tex] ----> Translated right by 1 unit

Part 5) [tex]y=-x^{2}-1[/tex]  ----> Reflected across the y-axis

Part 6) [tex]y=-x^{2}-2[/tex]  ----> Translated down by 1 unit

Step-by-step explanation:

we know that

The parent function is

[tex]y=-x^{2}-1[/tex] ----> this is a vertical parabola open downward with vertex at (0,-1)

Calculate each case

Part 1) Translated up by 1 unit

The rule of the translation is

(x,y) -----> (x,y+1)

so

(0,-1) ----> (0,-1+1)

(0,1) ----> (0,0) ----> the new vertex

The new function is equal to

[tex]y=-x^{2}[/tex]

Part 2) Reflected across the x-axis

The rule of the reflection is

(x,y) -----> (x,-y)

so

(0,-1) ----> (0,1) ----> the new vertex

The new function is equal to

[tex]y=x^{2}+1[/tex]

Part 3) Translated left by 1 unit

The rule of the translation is

(x,y) -----> (x-1,y)

so

(0,-1) ----> (0-1,-1)

(0,1) ----> (-1,-1) ----> the new vertex

The new function is equal to

[tex]y=-(x+1)^{2}-1[/tex]

Part 4) Translated right by 1 unit

The rule of the translation is

(x,y) -----> (x+1,y)

so

(0,-1) ----> (0+1,-1)

(0,1) ----> (1,-1) ----> the new vertex

The new function is equal to

[tex]y=-(x-1)^{2}-1[/tex]

Part 5) Reflected across the y-axis

The rule of the reflection is

(x,y) -----> (-x,y)

so

(0,-1) ----> (0,-1) ----> the new vertex

The new function is equal to

[tex]y=-x^{2}-1[/tex]

Part 6) Translated down by 1 unit

The rule of the translation is

(x,y) -----> (x,y-1)

so

(0,-1) ----> (0,-1-1)

(0,1) ----> (0,-2) ----> the new vertex

The new function is equal to

[tex]y=-x^{2}-2[/tex]

Ver imagen calculista