Respuesta :

gmany

Step-by-step explanation:

The pointl-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

We have

[tex]m=\dfrac{1}{3},\ (-2,\ 1)\to x_1=-2,\ y_1=1[/tex]

Substitute:

[tex]y-1=\dfrac{1}{3}(x-(-2))[/tex]

[tex]y-1=\dfrac{1}{3}(x+2)[/tex] → the point-slope form

Convert to the slope-intercept form:

[tex]y-1=\dfrac{1}{3}(x+2)[/tex]           use the distributive property

[tex]y-1=\dfrac{1}{3}x+\dfrac{2}{3}[/tex]    add 1 = 3/3 to both sides

[tex]y=\dfrac{1}{3}x+\dfrac{5}{3}[/tex] → the slope-intercept form

Convert to the standard form:

[tex]y=\dfrac{1}{3}x+\dfrac{5}{3}[/tex]       multiply both sides by 3

[tex]3y=x+5[/tex]             subtract x from both sides

[tex]-x+3y=5[/tex]         change the signs

[tex]x-3y=-5[/tex] → the standard form

Convert to the general form:

[tex]x-3y=-5[/tex]         add 5 to both sides

[tex]x-3y+5=0[/tex] → the general form