Respuesta :

Answer:

[tex]x=1(+/-)0.5i\sqrt{10}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^{2}=4x-7[/tex]  

[tex]2x^{2}-4x+7=0[/tex]  

so

[tex]a=2\\b=-4\\c=7[/tex]

substitute

[tex]x=\frac{4(+/-)\sqrt{(-4)^{2}-4(2)(7)}} {2(2)}[/tex]

[tex]x=\frac{4(+/-)\sqrt{-40}} {4}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

[tex]x=\frac{4(+/-)2i\sqrt{10}} {4}[/tex]

[tex]x=1(+/-)0.5i\sqrt{10}[/tex]