Respuesta :
Answer:
log_3(2x+15)=2 and log_4(-20x+4)=3
Step-by-step explanation:
Plug it in and see!
[tex]log_3(2x+15)=2\\log_3(2(-3)+15)=2\\log_3(-6+15)=2\\log_3(9)=2\\\text{ This is a true equation because } 3^2=9\\\\\\log_5(8(-3)+9)=2\\log_5(-24+9)=2\\log_5(-15)=2\\\\\text{ Not true because you cannot do log of a negative number }\\\\log_4(-20(-3)+4)=3\\log_4(64)=3\\\text{ this is true because } 4^3=64\\\\\\log_x (81)=4\\log_{-3}(81)=4\\\text{ the base cannot be negative }\\\\\\\\\text{ There is only two options here} \\\\log_3(2x+15)=2 \text{ and } log_4(-20x+4)=3[/tex]