What is the pH of a solution of 0.400 M CH₃NH₂ containing 0.250 M CH₃NH₃I? (Kb of CH₃NH₂ is 4.4 × 10⁻⁴)

Respuesta :

znk

Answer:

[tex]\boxed{\text{10.84}}[/tex]

Explanation:

A solution of a weak base and its conjugate acid is a buffer.

The equation for the equilibrium is

[tex]\rm CH$_3$NH$_2$ + H$_2$O $\, \rightleftharpoons \,$ CH$_3$NH$_2$+ H$_{3}$O$^{+}$\\\text{For ease of typing, let's rewrite this equation as}\\\rm B + H$_2$O $\longrightarrow \,$ BH$^{+}$ + OH$^{-}$; $K_{\text{b}}$ = 4.4 \times 10^{-4}$[/tex]

The Henderson-Hasselbalch equation for a basic buffer is

[tex]\text{pOH} = \text{p}K_{\text{b}} + \log\dfrac{[\text{BH}^{+}]}{\text{[B]}}[/tex]

Data:

   [B] = 0.400 mol·L⁻¹

[BH⁺] = 0.250 mol·L⁻¹

    Kb = 4.4 × 10⁻⁴

Calculations:

(a) Calculate pKb

pKb = -log(4.4× 10⁻⁴)  = 3.36

(b) Calculate the pH

[tex]\text{pOH} = 3.36 + \log \dfrac{0.250}{0.400} = 3.36 + \log 0.625 = 3.36 - 0.204 = 3.16\\\\\text{pH} =14.00 -3.16 = \mathbf{10.84}\\\\\text{The pH of the solution is }\boxed{\textbf{10.84}}[/tex]

The pH of a solution of 0.400 M CH₃NH₂ containing 0.250 M CH₃NH₃I = 10.84

This given solution contains a weak base (CH₃NH₂) and the conjugate acid of that weak base (CH₃NH₃I) which makes a Buffer.

  • To find the pH of a basic buffer, we can use a modification of the Henderson Hasselbalch equation.

We know that  

[tex]pOH=pK_b+log\frac{[salt]}{[base]}[/tex]

or, [tex]pH=pK_a+log\frac{[base]}{[salt]}[/tex]

CH₃NH₂ is the base and CH₃NH₃I is the corresponding conjugate acid (salt).

Given:

[base] = 0.400 M

[salt] or [acid] = 0.250 M

= 4.4 * 10-4

So = 3.36

solution:

Putting in the equation,

[tex]pOH= 3.36 +log\frac{0.250\ M}{0.400\ M}[/tex]

pOH= 3.16

So pH = 14 - pOH

= 10.84

Thus, the pH of a solution of 0.400 M CH₃NH₂ containing 0.250 M CH₃NH₃I = 10.84

Learn more:

https://brainly.com/question/3775914