PLEASE HELP TRIG SEE ATTACHMENT WILL MARK BRAINLIEST

Answer:
sin Ф=3/√13
Cos Ф=2/√13
Tan Ф=3/2
Step-by-step explanation:
Let x=2
Let y=3
Let r be the length of line segment drawn from origin to the point
[tex]r=\sqrt{x^2+y^2}[/tex]
Find r
[tex]r=\sqrt{2^2+3^2} =\sqrt{4+9} =\sqrt{13}[/tex]
Apply the relationship for sine, cosine and tan of Ф where
r=hypotenuse
Sine Ф=length of opposite side÷hypotenuse
Sin Ф=O/H where o=3, hypotenuse =√13
sin Ф=3/√13
CosineФ=length of adjacent side÷hypotenuse
Cos Ф=A/H
Cos Ф=2/√13
Tan Ф=opposite length÷adjacent length
TanФ=O/A
Tan Ф=3/2