Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the exact values of the trigonometric ratios

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex], cos60° = [tex]\frac{1}{2}[/tex]

sin45° = cos45° = [tex]\frac{1}{\sqrt{2} }[/tex]

Using the sine ratio on the right triangle on the left

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{a}{4\sqrt{3} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex]

Cross- multiply

2a = 4[tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 12 ( divide both sides by 2 )

a = 6

Using the cosine ratio on the same right triangle

cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{c}{4\sqrt{3} }[/tex] = [tex]\frac{1}{2}[/tex]

Cross- multiply

2c = 4[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

c = 2[tex]\sqrt{3}[/tex]

------------------------------------------------------------------------------------------

Using the sine/cosine ratios on the right triangle on the right

sin45° = [tex]\frac{a}{b}[/tex] = [tex]\frac{6}{b}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex]

Cross- multiply

b = 6[tex]\sqrt{2}[/tex]

cos45° = [tex]\frac{d}{b}[/tex] = [tex]\frac{d}{6\sqrt{2} }[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex]

Cross- multiply

[tex]\sqrt{2}[/tex] d = 6[tex]\sqrt{2}[/tex] ( divide both sides by [tex]\sqrt{2}[/tex] )

d = 6

------------------------------------------------------------------------------------------------

a = 6, b = 6[tex]\sqrt{2}[/tex], c = 2[tex]\sqrt{3}[/tex], d = 6