Respuesta :

Answer:

Is an acute triangle

Step-by-step explanation:

we have

[tex]G(7, 3),H(9, 0),I(5, -1)[/tex]

so

The polygon is a triangle

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Remember that

If applying the Pythagoras Theorem

[tex]c^{2}=a^{2}+b^{2}[/tex] -----> is a right triangle

[tex]c^{2}>a^{2}+b^{2}[/tex] -----> is an obtuse triangle

[tex]c^{2}<a^{2}+b^{2}[/tex] -----> is an acute triangle

where

c is the greater side

step 1

Find the distance GH

[tex]G(7, 3),H(9, 0),I(5, -1)[/tex]

substitute

[tex]d=\sqrt{(0-3)^{2}+(9-7)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(2)^{2}}[/tex]

[tex]GH=\sqrt{13}\ units[/tex]

step 2

Find the distance HI

[tex]G(7, 3),H(9, 0),I(5, -1)[/tex]

substitute

[tex]d=\sqrt{(-1-0)^{2}+(5-9)^{2}}[/tex]

[tex]d=\sqrt{(-1)^{2}+(-4)^{2}}[/tex]

[tex]HI=\sqrt{17}\ units[/tex]

step 3

Find the distance GI

[tex]G(7, 3),H(9, 0),I(5, -1)[/tex]

substitute

[tex]d=\sqrt{(-1-3)^{2}+(5-7)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(-2)^{2}}[/tex]

[tex]GI=\sqrt{20}\ units[/tex]

step 4

Let

[tex]c=GI=\sqrt{20}\ units[/tex]

[tex]a=HI=\sqrt{17}\ units[/tex]

[tex]b=GH=\sqrt{13}\ units[/tex]

Find [tex]c^{2}[/tex] ------> [tex]c^{2}=(\sqrt{20})^{2}=20[/tex]

Find [tex]a^{2}+b^{2}[/tex] ----> [tex](\sqrt{17})^{2}+(\sqrt{13})^{2}=30[/tex]

Compare

[tex]20 < 30[/tex]

therefore

Is an acute triangle