Suppose θ is an angle in the standard position whose terminal side is in Quadrant IV and cot θ= -6/7 . Find the exact values of the five remaining trigonometric functions of θ. Show your work

Respuesta :

Answer:

Part 1) [tex]csc(\theta)=-\frac{\sqrt{85}}{7}[/tex]

Part 2) [tex]sin(\theta)=-\frac{7}{\sqrt{85}}[/tex]  or [tex]sin(\theta)=-\frac{7\sqrt{85}}{85}[/tex]

Part 3) [tex]tan(\theta)=-\frac{7}{6}[/tex]

Part 4) [tex]cos(\theta)=\frac{6}{\sqrt{85}}[/tex] or [tex]cos(\theta)=\frac{6\sqrt{85}}{85}[/tex]

Part 5) [tex]sec(\theta)=\frac{\sqrt{85}}{6}[/tex]

Step-by-step explanation:

we know that

The angle theta lie on the IV Quadrant

so

sin(θ) is negative

cos(θ) is positive

tan(θ) is negative

sec(θ) is positive

csc(θ) is negative

step 1

Find the value of csc(θ)

we know that

[tex]1+cot^{2}(\theta)=csc^{2}(\theta)[/tex]

we have

[tex]cot(\theta)=-\frac{6}{7}[/tex]

substitute

[tex]1+(-\frac{6}{7})^{2}=csc^{2}(\theta)[/tex]

[tex]1+\frac{36}{49}=csc^{2}(\theta)[/tex]

[tex]\frac{85}{49}=csc^{2}(\theta)[/tex]rewrite

[tex]csc(\theta)=-\frac{\sqrt{85}}{7}[/tex] ----> remember that is negative

step 2

Find the value of sin(θ)

we know that

[tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]

we have

[tex]csc(\theta)=-\frac{\sqrt{85}}{7}[/tex]

therefore

[tex]sin(\theta)=-\frac{7}{\sqrt{85}}[/tex]

or

[tex]sin(\theta)=-\frac{7\sqrt{85}}{85}[/tex]

step 3

Find the value of  tan(θ)

we know that

[tex]tan(\theta)=\frac{1}{cot(\theta)}[/tex]

we have

[tex]cot(\theta)=-\frac{6}{7}[/tex]

therefore

[tex]tan(\theta)=-\frac{7}{6}[/tex]

step 4

Find the value of cos(θ)

we know that

[tex]sin^{2}(\theta)+cos^{2}(\theta)=1[/tex]

we have

[tex]sin(\theta)=-\frac{7}{\sqrt{85}}[/tex]

substitute

[tex](-\frac{7}{\sqrt{85}})^{2}+cos^{2}(\theta)=1[/tex]

[tex]\frac{49}{85}+cos^{2}(\theta)=1[/tex]

[tex]cos^{2}(\theta)=1-\frac{49}{85}[/tex]

[tex]cos^{2}(\theta)=\frac{36}{85}[/tex]

[tex]cos(\theta)=\frac{6}{\sqrt{85}}[/tex] ------> the cosine is positive

or

[tex]cos(\theta)=\frac{6\sqrt{85}}{85}[/tex]

step 5

Find the value of sec(θ)

we know that

[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]

we have

[tex]cos(\theta)=\frac{6}{\sqrt{85}}[/tex]

therefore

[tex]sec(\theta)=\frac{\sqrt{85}}{6}[/tex] ----> is positive