Respuesta :

Answer:

The answer in the procedure

Step-by-step explanation:

we have

[tex]\frac{sin(x)}{1-cos(x)}+\frac{sin(x)}{1-cos(x)}=2csc(x)[/tex]

Prove the identity

In this problem there is a mistake: in order to obtain an identity the second denominator at the left side must be 1 + cosx

so

[tex]\frac{sin(x)}{1-cos(x)}+\frac{sin(x)}{1+cos(x)}=2csc(x)[/tex]

Adds fraction in the left side

[tex]\frac{sin(x)(1+cos(x)+sin(x)(1-cos(x)}{1-cos^{2} (x)}=2csc(x)\\ \\\frac{2sin(x)}{1-cos^{2} (x)}=2csc(x)[/tex]

Remember that

[tex]csc(x)=\frac{1}{sin(x)}[/tex]

and

[tex]sin^{2}(x)+cos^{2}(x)=1[/tex]

[tex]sin^{2}(x)=1-cos^{2}(x)[/tex]

substitute

[tex]\frac{2sin(x)}{sin^{2}(x)}=2\frac{1}{sin(x)}[/tex]

Multiply both sides by sin(x)

[tex](sin(x))\frac{2sin(x)}{sin^{2}(x)}=2[/tex]

[tex]\frac{2sin^{2}(x)}{sin^{2}(x)}=2[/tex]

[tex]2=2[/tex] ----> identity verified