Respuesta :

Answer:

[tex] x=0,\pi,2\pi[/tex] on the interval [tex]0\le x\le 2\pi[/tex]

Step-by-step explanation:

The given equation is:

[tex]\tan^2x \sec^2x+2+2\sec^2x-\tan^2x=2[/tex]

We rearrange to get:

[tex]\tan^2x \sec^2x+2+2\sec^2x-\tan^2x-2=0[/tex]

Factor by grouping:

[tex] \sec^2x(\tan^2x+2)-1(\tan^2x+2)=0[/tex]

[tex] (\sec^2x-1)(\tan^2x+2)=0[/tex]

Apply the zero product principle:

[tex] (\sec^2x-1)=0\:\:\:Or\:\:\:(\tan^2x+2)=0[/tex]

When

[tex] \sec^2x-1=0[/tex]

Then [tex] \sec x=\pm1[/tex]

This implies that:

[tex] \cos x=\pm1[/tex]

[tex] x=0,\pi,2\pi[/tex]

When [tex]\tan^2x+2+2=0[/tex], we get  [tex]\tan^2x=-2[/tex], x is not defined for real values.