Find \cos\left(\dfrac{19\pi}{12}\right)cos( 12 19π ​ )cosine, left parenthesis, start fraction, 19, pi, divided by, 12, end fraction, right parenthesis exactly using an angle addition or subtraction formula.

Respuesta :

Answer:

The value of given expression is [tex]-\frac{\sqrt{2}-\sqrt{6}}{4}[/tex].

Step-by-step explanation:

The given expression is

[tex]\cos\left(\dfrac{19\pi}{12}\right)[/tex]

The trigonometric ratios are not defined for [tex]\dfrac{19\pi}{12}[/tex].

[tex]\dfrac{19\pi}{12}[/tex] can be split into [tex]\frac{5\pi}{4}+\frac{\pi}{3}[/tex].

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\cos (\frac{5\pi}{4}+\frac{\pi}{3})[/tex]

Using the addition formula

[tex]\cos (A+B)=\cos A\cos B-\sin A\sin B[/tex]

[tex]\cos (\frac{5\pi}{4}+\frac{\pi}{3})=\cos( \frac{\pi}{3})\cdot \cos (\frac{5\pi}{4})-\sin( \frac{\pi}{3})\cdot \sin (\frac{5\pi}{4})[/tex]

We know that, [tex]\cos(\frac{\pi}{3})=\frac{1}{2}[/tex] and [tex]\sin (\frac{\pi}{3})=\frac{\sqrt{3}}{2}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\frac{1}{2}\cdot \cos (\frac{5\pi}{4})-\frac{\sqrt{3}}{2}\cdot \sin (\frac{5\pi}{4})[/tex]

[tex]\frac{5\pi}{4}[/tex] lies in third quadrant, by using reference angle properties,

[tex]\cos(\frac{5\pi}{4})=-\cos(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}[/tex]

[tex]\sin(\frac{5\pi}{4})=-\sin(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\frac{1}{2}\cdot (-\frac{\sqrt{2}}{2})-\frac{\sqrt{3}}{2}\cdot (-\frac{\sqrt{2}}{2})[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=-\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=-\frac{(\sqrt{2}-\sqrt{6})}{4}[/tex]

Therefore the value of given expression is [tex]-\frac{\sqrt{2}-\sqrt{6}}{4}[/tex].