Answer:
[tex]\cos (115\degree)=-0.423[/tex]
Step-by-step explanation:
The parametric equations of a circle is
[tex]x=r\cos \theta[/tex] and [tex]y=r\sin \theta[/tex]
The radius of the unit circle is 1 unit.
This implies that any point on the unit circle is represented by:
[tex]x=\cos \theta[/tex] and [tex]y=\sin \theta[/tex]
where [tex]\theta[/tex] is the angle in standard position,
From the question, the given angle in standard position is [tex]115\degree[/tex].
This angle intersects the unit circle at [tex]x=-0.423[/tex]
But [tex]x=\cos \theta[/tex]
We substitute [tex]\theta=115\degree[/tex] and [tex]x=-0.423[/tex]
This implies that: [tex]\cos (115\degree)=-0.423[/tex]