Evaluate the function at the indicated values if possible. If an indicated value is not in the​ domain, say so.
f left parenthesis x right parenthesis equals StartFraction x plus 7 Over x squared minus 9 EndFraction
​; f left parenthesis negative 7 right parenthesis​, f left parenthesis 2 right parenthesis​, f left parenthesis 3 right parenthesis

Respuesta :

Answer:

f(-7)=0.

f(2)=-9/5.

f(3) doesn't exist because 3 isn't in the domain of the function.

Step-by-step explanation:

[tex]f(x)=\frac{x+7}{x^2-9}[/tex] is the given function.

We are asked to find:

[tex]f(-7)[/tex]

[tex]f(2)[/tex]

[tex]f(3)[/tex].

f(-7) means to replace x in the expression called f with -7:

Evaluate [tex]\frac{x+7}{x^2-9}[/tex] at [tex]x=-7[/tex]

[tex]\frac{(-7)+7}{(-7)^2-9}[/tex]

[tex]\frac{0}{49-9}[/tex]

[tex]\frac{0}{40}[/tex]

[tex]0[/tex]

So f(-7)=0.

f(2) means to replace x in the expression called f with 2:

Evaluate [tex]\frac{x+7}{x^2-9}[/tex] at [tex]x=2[/tex]

[tex]\frac{2+7}{2^2-9}[/tex]

[tex]\frac{9}{4-9}[/tex]

[tex]\frac{9}{-5}[/tex]

[tex]\frac{-9}{5}[/tex]

So f(2)=-9/5

f(3) means to replace x in the expression called f with 3:

Evaluate [tex]\frac{x+7}{x^2-9}[/tex] at [tex]x=3[/tex]

[tex]\frac{3+7}{3^2-9}[/tex]

[tex]\frac{10}{9-9}[/tex]

[tex]\frac{10}{0}[/tex]

Division by 0 is not allowed so 3 is not in the domain of our function.