Respuesta :

Answer:

[tex]y'=\frac{y^2-xy\ln(y)}{x^2-xy\ln(x)}[/tex]

Step-by-step explanation:

Take natural log of both sides first.

[tex]x^y=y^x[/tex]

[tex]\ln(x^y)=\ln(y^x)[/tex]

Taking the natural log of both sides allows you to bring down the powers.

[tex]y\ln(x)=x\ln(y)[/tex]

I'm going to differentiate both sides using the power rule.

[tex](y)'(\ln(x))+(\ln(x))'y=(x)'(\ln(y))+(\ln(y))'x[/tex]

Now recall (ln(x))'=(x)'/x=1/x while (ln(y))'=(y)'/y=y'/y.

[tex]y'(\ln(x))+\frac{1}{x}y=1(\ln(y))+\frac{y'}{y}x[/tex]

Simplifying a bit:

[tex]y' \ln(x)+\frac{y}{x}=\ln(y)+\frac{y'}{y}x[/tex]

Now going to gather my terms with y' on one side while gathering other terms without y' on the opposing side.

Subtracting y'ln(x) and ln(y) on both sides gives:

[tex]\frac{y}{x}-\ln(y)=-y'\ln(x)+\frac{y'}{y}x[/tex]

Now I'm going to factor out the y' on the right hand side:

[tex]\frac{y}{x}-\ln(y)=(-\ln(x)+\frac{x}{y})y'[/tex]

Now we get to get y' by itself by dividing both sides by (-ln(x)+x/y):

[tex]\frac{\frac{y}{x}-\ln(y)}{-\ln(x)+\frac{x}{y}}=y'[/tex]

Now this looks nasty to write mini-fractions inside a bigger fraction.

So we are going to multiply top and bottom by xy giving us:

[tex]\frac{y^2-yx\ln(y)}{-xy\ln(x)+x^2}=y'[/tex]

[tex]y'=\frac{y^2-xy\ln(y)}{x^2-xy\ln(x)}[/tex]