Respuesta :
Answer:
x=-7, y=2
Step-by-step explanation:
You are given the matrix equation
[tex]\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right] \cdot \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}-18\\13\end{array}\right][/tex]
Find the inverse matrix for the matrix
[tex]\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right][/tex]
1. The determinant is
[tex]\left|\left[\begin{array}{cc}2&-2\\-1&3\end{array}\right]\right|=2\cdot 3-(-1)\cdot (-2)=6-2=4[/tex]
2.
[tex]a_{11}=2 \Rightarrow A_{11}=3\\ \\a_{12}=-2 \Rightarrow A_{12}=-(-1)=1\\ \\a_{21}=-1 \Rightarrow A_{21}=-(-2)=2\\ \\a_{22}=3 \Rightarrow A_{22}=2[/tex]
3. Inverse matrix is
[tex]\dfrac{1}{4}\left[\begin{array}{cc}3&1\\2&2\end{array}\right]^T=\dfrac{1}{4}\left[\begin{array}{cc}3&2\\1&2\end{array}\right][/tex]
So, the solution of the equation is
[tex]\left[\begin{array}{c}x\\y\end{array}\right]=\dfrac{1}{4}\left[\begin{array}{cc}3&2\\1&2\end{array}\right]\cdot \left[\begin{array}{c}-18\\13\end{array}\right]=\\ \\=\dfrac{1}{4}\left[\begin{array}{cc}3\cdot(-18)+2\cdot 13\\1\cdot (-18)+2\cdot 13\end{array}\right]=\dfrac{1}{4}\left[\begin{array}{c}-28\\8\end{array}\right]=\left[\begin{array}{c}-7\\2\end{array}\right][/tex]