Respuesta :

Answer:

answer is a,b

Step-by-step explanation:

I have answered ur question

The mid-point of AC is (a, b). So, option D is correct. In a rectangle, the two diagonals bisect each other at their mid-point.

How to prove that the diagonals of a rectangle bisect each other?

  • Find the mid-points of both the diagonals of the rectangle
  • Mid-point = ((x1+x2)/2, (y1+y2)/2)
  • If the midpoints of both the diagonals are the same then they are said to bisect each other.
  • If they are not the same, then they are not bisecting each other.

Calculation:

The given rectangle is ABCD

Its vertices have coordinates as

A - (0, 0)

B - (0, 2a)

C - (2a, 2b)

D - (2a, 0)

The diagonals are AC and BD.

Finding their mid-points:

Mid-point of the diagonal AC = ((0 + 2a)/2 , (0 + 2b)/2)

⇒ (2a/2, 2b/2)

⇒ (a, b) ... (1)

Mid-point of the diagonal BD = ((0 + 2a)/2, (2a+0)/2)

⇒ (2a/2, 2b/2)

⇒ (a, b)  ...(2)

From (1) and (2), the midpoints of both the diagonals are equal. So, the diagonals of the rectangle ABCD bisect each other.

Hence, proved.

Therefore, the mid-point of the diagonal AC is (a, b).

Learn more about the diagonals of a rectangle here:

https://brainly.com/question/17117320

#SPJ2