Answer:
[tex]N_{wall} = 654.72 N[/tex]
μ = 0.53
Explanation:
ladder length = 7.8 m
weight of ladder= 350 N
weight of fire fighter = 885 N
distance of the fire fighter from bottom of ladder = 6.40 m
θ = 54⁰
taking torque about the bottom of ladder
[tex]N_{wall}\times l_{Ladder}\ sin\theta- 885\times 6.4\ cos\theta-350\times (7.8cos\theta)/2=0[/tex]
[tex]N_{wall}\times 7.8\ sin54^{\circ}- 885\times 6.4\ cos54^{\circ}-350\times (7.8cos54^{\circ})/2=0[/tex]
[tex]N_{wall} = 654.72 N[/tex]
taking vertical forces :
[tex]N_y-350-885=0\\N_y=1235N[/tex]
now all the horizontal forces:
[tex]f\ -\ N_{wall} = 0\\f= 654.72N[/tex]
we know,
f = μ N
[tex]\mu = \dfrac{f}{N_{y}}=\frac{654.72}{1235}[/tex]
μ = 0.53