A spherical iron ball 10 in. in diameter is coated with a layer of ice of uniform thickness. If the ice melts at a rate of 15 in cubed Over min, how fast is the thickness of the ice decreasing when it is 3 in​ thick?

Respuesta :

Answer:

Decreasing rate of thickness when x=3 in is [tex]\dfrac{dx}{dt}= -7.28\times 10^{-3} in/min[/tex]

Explanation:

Lets assume that thickness of ice over the spherical iron ball =x

So radius diameter of Sphere=5+x in

    Inner radius=5 in

So volume V=[tex]\dfrac{4}{3}\pi [(5+x )^3-5^3][/tex]

         V=[tex]\dfrac{4}{3}\pi [x^3+75x^2+15x][/tex]

Now given that ice melts rate=[tex] 15in^3/min[/tex]

[tex]\dfrac{dV}{dt}= -15in^3/min[/tex]

[tex]\dfrac{dV}{dt}=\dfrac{4}{3}\pi [3x^2+150x+15]\dfrac{dx}{dt}[/tex]

When x=3 in [tex]\dfrac{dV}{dt}= -15in^3/min[/tex]

[tex]-15=\dfrac{4}{3}\pi [3\times 3^2+150\times 3+15]\dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt}= -7.28\times 10^{-3} in/min[/tex]

So decreasing rate of thickness when x=3 in is [tex]\dfrac{dx}{dt}= -7.28\times 10^{-3} in/min[/tex]

        Â