Respuesta :
Answer:
x=0, x= -3 and x=2
Step-by-step explanation:
[tex]f(x)=x^3+x^2-6x[/tex]
put f(x)=0
[tex]f(x)=0[/tex]
[tex]x^3+x^2-6x=0[/tex]
[tex]x(x^2+x-6)=0[/tex]
Splitting the middle term in such a way that their product is [tex]-6x^2[/tex] and sum is [tex]x[/tex]
[tex]x(x^2+3x-2x-6)=0[/tex]
[tex]x[x(x+3)-2(x+3)]=0[/tex]
[tex]x(x+3)(x-2)=0[/tex]
hence
[tex]x=0[/tex]
[tex](x+3)=0[/tex]
[tex]x=-3[/tex]
[tex](x-2)=0[/tex]
[tex]x=2[/tex]
hence the zeros of the polynomial are 0,-3,2