A box at a miniature golf course contains contains 4 red golf balls, 8 green golf balls, and 7 yellow golf balls. What is the probability of taking out a golf ball and having it be a red or a yellow golf ball? Express your answer as a percentage and round it to two decimal places.

Respuesta :

Answer:

 =57.89%

Step-by-step explanation:

The total number of golf ball is 4+8+7 = 19

P (red or yellow) = number of red or yellow

                              ------------------------------------

                                total number of golf balls

                           = 4+7

                              -----

                              19

                         =11/19

Changing this to a percent means changing it to a decimal and multiplying by 100%

                        = .578947368 * 100%

                         =57.8947368%

Rounding to two decimal places

                         =57.89%

The required probability is [tex]57.89\%[/tex]..

Important information:

  • Number of red golf balls: 4
  • Number of green golf balls: 8
  • Number of yellow golf balls: 7

We need to find the probability of taking out a golf ball and having it be a red or a yellow golf ball.

Probability:

Total number of golf balls is:

[tex]4+8+7=19[/tex]

Number of red and yellow balls is:

[tex]4+7=11[/tex]

The probability of taking out a golf ball and having it be a red or a yellow golf ball.

[tex]P=\dfrac{\text{Number of red and yellow balls}}{\text{Total number of golf balls}}[/tex]

[tex]P=\dfrac{11}{19}[/tex]

Convert it into percent form.

[tex]P=\dfrac{11}{19}\times 100\%[/tex]

[tex]P=\dfrac{1100}{19}\%[/tex]

[tex]P=57.8947...\%[/tex]

[tex]P\approx 57.89\%[/tex]

Thus, the required probability is [tex]57.89\%[/tex].

Find out more about 'Probability' here:

https://brainly.com/question/743546