In a certain city the temperature (in °F) t hours after 9 AM was modeled by the function T(t) = 52 + 17 sin πt 12 . Find the average temperature Tave during the period from 9 AM to 9 PM. (Round your answer to the nearest whole number.)

Respuesta :

Answer:

so average temperature is 52 °F

Step-by-step explanation:

Given data

function f(t) = 52 + 17 sin πt/12

time = 9 am to 9 pm i.e. ( 0 to 12 ) hours

to find out

average temperature

solution

we know time period is 12 hours so function interval will be ( 0, 12 )

we will integrate the function with respect to t from a to b i.e 0 to 12 limit

i.e.

T_{avg}= [tex]\frac{1}{b-a} \int_{a}^{b} f(t)dt[/tex]  .......................1

here put all value and integrate it

T_{avg}= [tex]\frac{1}{12-0} \int_{0}^{12} (52 + 17 sin \pi t/12)dt[/tex]

T_{avg}= [tex]\frac{1}{12} \int_{0}^{12} (52 + 17 sin \pi t/12)dt[/tex]  

T_{avg}= [tex]\frac{1}{12} (52t + 17(12/\pi) (-cos \pi t/12)^{12}_0[/tex]  

T_{avg}= 0.08333 × (52(12-0) + 204/ [tex]\pi[/tex] (-cos([tex]\pi[/tex] *12)/12) - cos(0))  

T_{avg}= 51.99792

so average temperature is 52 °F