Answer:
a) 3.94 rad/s
b) 11.84 rad/s
Explanation:
Given:
Distance, s = 78 cm = 0.78 m
Now the time taken, t
we know
[tex]s = ut +\frac{1}{2}gt^2[/tex]
where,
s  = distance
u = initial speed
g = acceleration due to gravity
since it is a free fall. thus, u = 0
thus, we get
[tex]0.78 = 0\times t +\frac{1}{2}9.8\times t^2[/tex]
or
[tex]t=\sqrt{\frac{2\times 0.78}{9.8}}=0.398 s[/tex]
a) now, the smallest angle will be 1/4 of the revolution so as to fall on the butter side i.e 90° or ([tex]\frac{\pi}{2}[/tex])
also,
[tex]angular\ speed\ (\omega) = \frac{Change\ in\ angle}{time}[/tex]
thus, we have
[tex]angular\ speed\ (\omega) = \frac{\frac{\pi}{2}}{0.398} = 3.94rad/s[/tex]
b)now, the largest angle will be 3/4 of the revolution so as to fall on the butter side i.e 270° or ([tex]\frac{3\pi}{2}[/tex]) contributing to the largest angular speed
[tex]angular\ speed\ (\omega) = \frac{Change\ in\ angle}{time}[/tex]
thus, we have
[tex]angular\ speed\ (\omega) = \frac{\frac{3\pi}{2}}{0.398} =11.84rad/s[/tex]