Respuesta :

Answer:

[tex]\cos(\theta)=\pm \frac{24}{25}[/tex]

Step-by-step explanation:

I don't know where [tex]\theta[/tex] is so there is going to be two possibilities for cosine value, one being positive while the other is negative.

A Pythagorean Identity is [tex]\cos^2(\theta)+\sin^2(\theta)=1[/tex].

We are given [tex]\sin(\theta)=\frac{7}{25}[/tex].

So we are going to input [tex]\frac{7}{25}[/tex] for the [tex]sin(\theta)[/tex]:

[tex]\cos^2(\theta)+(\frac{7}{25})^2=1[/tex]

[tex]\cos^2(\theta)+\frac{49}{625}=1[/tex]

Subtract 49/625 on both sides:

[tex]\cos^2(\theta)=1-\frac{49}{625}[/tex]

Find a common denominator:

[tex]\cos^2(\theta)=\frac{625-49}{625}[/tex]

[tex]\cos^2(\theta)=\frac{576}{625}[/tex]

Square root both sides:

[tex]\cos(\theta)=\pm \sqrt{\frac{576}{625}}[/tex]

[tex]\cos(\theta)=\pm \frac{\sqrt{576}}{\sqrt{625}}[/tex]

[tex]\cos(\theta)=\pm \frac{24}{25}[/tex]