Respuesta :
Answer:
Vertify is an identity
Sin2x=2cotx(sin^2x)
starting from the right-hand side
2cotx(sin^2x)
=2(cosx/sinx)(sin^2x)
=2(cosx/sinx)(sin^2x)
=2sinxcosx=sin2x
ans:right-hand side=left-hand side
Step-by-step explanation:
Step-by-step explanation:
sin^2x = 2cotx sin^2x
Rewrite right side as fractions:
sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{cosx}{sinx}[/tex] * [tex]\frac{(sinx)(sinx)}{1}[/tex]
Multiply together [tex]\frac{cosx}{sinx}[/tex] and [tex]\frac{(sinx)(sinx)}{1}[/tex] :
sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{(cosx)(sinx)(sinx)}{sinx}[/tex]
Cancel out sinx on top and bottom:
sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{(sinx)(cosx)}{1}[/tex]
Multiply together 2 and (sinx)(cosx):
sin^2x = 2sinxcosx
Substitute sin^2x in for 2sinxcosx:
sin^2x = sin^2x