contestada

51. Suppose you measure the terminal voltage of a 3.200-V lithium cell having an internal resistance of 5.00Ω by placing a 1.00-kΩ voltmeter across its terminals. (a) What current flows? (b) Find the terminal voltage. (c) To see how close the measured terminal voltage is to the emf, calculate their ratio.

Respuesta :

Explanation:

Given that,

Terminal voltage = 3.200 V

Internal resistance [tex]r= 5.00\ \Omega[/tex]

(a). We need to calculate the current

Using rule of loop

[tex]E-IR-Ir=0[/tex]

[tex]I=\dfrac{E}{R+r}[/tex]

Where, E = emf

R = resistance

r = internal resistance

Put the value into the formula

[tex]I=\dfrac{3.200}{1.00\times10^{3}+5.00}[/tex]

[tex]I=3.184\times10^{-3}\ A[/tex]

(b). We need to calculate the terminal voltage

Using formula of terminal voltage

[tex]V=E-Ir[/tex]

Where, V = terminal voltage

I = current

r = internal resistance

Put the value into the formula

[tex]V=3.200-3.184\times10^{-3}\times5.00[/tex]

[tex]V=3.18\ V[/tex]

(c). We need to calculate the ratio of the terminal voltage of voltmeter equal to emf

[tex]\dfrac{Terminal\ voltage}{emf}=\dfrac{3.18}{3.200 }[/tex]

[tex]\dfrac{Terminal\ voltage}{emf}= \dfrac{159}{160}[/tex]

Hence, This is the required solution.