elr19
contestada

the number of three-digit numbers with distinct digits that be formed using the digits 1,2,3,5,8 and 9 is . The probability that both the first digit and the last digit of the three-digit number are even numbers .

Respuesta :

Answer:

a)120

b)6.67%

Step-by-step explanation:

Given:

No. of digits given= 6

Digits given= 1,2,3,5,8,9

Number to be formed should be 3-digits, as we have to choose 3 digits from given 6-digits so the no. of combinations will be

6P3= 6!/3!

      = 6*5*4*3*2*1/3*2*1

      =6*5*4

      =120

Now finding the probability that both the first digit and the last digit of the three-digit number are even numbers:

As the first and last digits can only be even

then the form of number can be

a)2n8 or

b)8n2

where n can be 1,3,5 or 9

4*2=8

so there can be 8 three-digit numbers with both the first digit and the last digit even numbers

And probability = 8/120

                          = 0.0667

                          =6.67%

The probability that both the first digit and the last digit of the three-digit number are even numbers is 6.67% !

1.

[tex]6\cdot5\cdot4=120[/tex]

2.

[tex]|\Omega|=120\\|A|=2\cdot4\cdot1=8\\\\P(A)=\dfrac{8}{120}=\dfrac{1}{15}\approx6.7\%[/tex]