Respuesta :
Answer:
Part a)
[tex]\phi' = 9943.5 Nm^2/C[/tex]
Part b)
[tex]\phi' = 4971.75 Nm^2/C[/tex]
Explanation:
Part a)
Total electric flux due to charge contained in a closed surface is given as
[tex]\phi = \frac{Q}{\epsilon_0}[/tex]
now we have
[tex]Q = 88 nC[/tex]
now from above equation total flux is given as
[tex]\phi = \frac{88 \times 10^{-9}}{8.85 \times 10^{-12}}[/tex]
[tex]\phi = 9943.5 Nm^2/C[/tex]
Part b)
Now we need to find the flux through the hemispherical surface
so we will have
[tex]\phi' = \frac{\phi}{2}[/tex]
here we have
[tex]\phi' = \frac{9943.5}{2}[/tex]
[tex]\phi' = 4971.75 Nm^2/C[/tex]
(a) The total electric flux through the surface of the shell is 9943.5[tex]\frac{Nm^2}{C}[/tex] Â
(b) The total electric flux through any hemispherical portion of the    shell's surface is 4971.75 [tex]\frac{Nm^2}{C}[/tex]
What is an electric flux?
Electric flux is the measure of the electric field through a given surface. It helps us to describe the strength of an electric field at any distance from the charge.
(a) The formula for the electric flux is given by,
[tex]\rm{\phi=\frac{Q}{\varepsilon_0}}[/tex] Â Â Â
Where , Q= 88.0 nC = [tex]88\times10^{-9}[/tex]
       [tex]\varepsilon_0[/tex] =[tex]{8.85\times10^{-12} }[/tex]
[tex]\phi=\frac{88\times10^{-9} }{8.85\times10^{-12} }[/tex]
[tex]\phi=9943.5\frac{Nm^{2} }{C}[/tex]
The total electric flux through the surface of the shell is 9943.5[tex]\frac{Nm^2}{C}[/tex]
(b) For the spherical surface electric flux is taken as [tex]\phi_2[/tex]
[tex]\rm{\phi_2=\frac{\phi_1}{2}}[/tex]
[tex]\rm{\phi_2=\frac{9943.5}{2}}[/tex]
[tex]\phi_2 =4979.5\frac{Nm^2}{C}[/tex]
The total electric flux through any hemispherical portion of the shell's surface is 4971.75 [tex]\frac{Nm^2}{C}[/tex]
To learn more about the electric flux refer to the link.
https://brainly.com/question/7944455
      Â