Answer:
[tex]\mu_k = 0.15[/tex]
Explanation:
according to the kinematic equation
[tex]v^{2} - u^{2} = 2aS[/tex]
Where
u is initial velocity  = 0 m/s
a = acceleration
S is distance = 8.00 m
final velocity = 1.0 m/s
[tex]a = \frac {v^{2}}{2S}[/tex]
[tex]a = \frac {1{2}}{2*8.6}[/tex]
a = 0.058 m/s^2
from newton second law
Net force = ma
[tex]f_{net} = ma[/tex]
F - f = ma
2[tex]5 - \mu_kN = ma[/tex]
[tex]25 - \mu_kmg = ma[/tex]
[tex]\frac {25 - ma}{mg} =\mu_k[/tex]
[tex]\frac {25 - 16*0.058}{16*9.81} = 0.15[/tex]
[tex]\mu_k = 0.15[/tex]